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Abstract. The inductive programming system WILLIAM is applied to machine learning
tasks, in particular, centralization, outlier detection, linear regression, linear classification and
decision tree classification. These examples appear as a special case of WILLIAM’s general
operation of trying to compress data without any special tuning.
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Introduction

Machine learning (ML) techniques and applications have revolutionized the world in recent decades,
mostly promising to learn by themselves from data, as opposed to hand-crafted algorithms and
feature detectors from earlier times. However, the term “learning”, just as many other AI terms,
has turned out to be euphemistic and exaggerating, referring mostly to parameter optimization
within a fixed representation, and only vaguely related to human learning whose breadth and scope
has remained unmatched. In the AGI context it therefore appears to be important to make machine
learning truly general, thereby boosting its success even more.

Since various ML algorithms utilize different objective functions the first step is to identify a
common optimization goal. Indeed, the minimum description length (MDL) principle has emerged
to be a promising candidate [1, 7]:

“The goal of statistical inference may be cast as trying to find regularity in the data.
’Regularity’ may be identified with ’ability to compress.’ MDL combines these two insights
by viewing learning as data compression: it tells us that, for a given set of hypotheses H
and data set D, we should try to find the hypothesis or combination of hypotheses in H
that compresses D most.” (p. 8 in [1])

Unfortunately, applications of MDL have been mostly limited to the selection of ML models
and parameter numbers, including meta-parameter selection as in AutoML, failing to break out
from a given representation space into a broader set of algorithmic data descriptions. The fact that
such a widening could be important for the generalization of machine learning heading toward AGI
has long been suggested by the father of algorithmic probability, Ray Solomonoff [8, 9]. However,
these suggestions did not go beyond theory, bringing forth a long-standing central problem for AGI:
the difficulty of making inference both general and efficient. To the best of my knowledge, apart
from the present paper, the only attempt of going beyond theory and realizing machine learning by
means of a general compression algorithm was done just recently, using a novel set of techniques
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for computing lower bounds on algorithmic probability based on the Coding theorem and Block
Decomposition methods [5].

This paper explores the abilities of WILLIAM [4] – an inductive programming method based on
the theory of incremental compression (IC) [3] – to deal with a set of simple machine learning prob-
lems. In Section 1 a short overview of WILLIAM’s novel aspects is given followed by the discussion
of its application to data centralization, outlier detection, linear regression, linear classification and
decision tree classification.

1 Overview of the algorithm

WILLIAM’s core functionality is given by an inductive programming algorithm already described in
[4], albeit with several major improvements. Most importantly, the data representation has moved
up from trees to directed acyclic graphs (DAGs), enabling the reuse of previously computed values.
Further, the graph is bipartite (see figures below), consisting of operator nodes and value nodes
(denoted by a box). Another innovation is the principle that any data used by the algorithm has to
be computed by the algorithm itself. For example, even integers are not “given for free”, except for
the integer 1 (called vacuum), all other integers have to be computed using the given operators.

WILLIAM’s main operation is to implement IC, i.e. given a data string x to find a description
by a composition of functions, x = f1 (f2 (· · · fs (rs))), by searching for stacked autoencoders. In
particular, for a given residuum ri−1 a pair of functions (fi, f

′
i) is searched such that ri−1 = fi (ri),

where ri := f ′i (ri−1) and l (fi)+ l (ri) < l (ri−1), i.e. compression is achieved at every step (x ≡ r0).
The fi are called features and f ′i descriptive maps. One of the main results is that the (prefix)
Kolmogorov complexity K(x) can be approximated in this way, when picking the shortest possible
feature f∗i at every step:

K (x) =

s∑
i=1

l (f∗i ) +K (rs) +O (s · log l(x)) (1)

In practice, in order to bound the search for descriptive maps, the shortest autoencoders, i.e.
the shortest sum l (fi) + l (f ′i) is searched, in compliance with computable IC (see Greedy-ALICE
[3, Chapter 4.1]).

In order to apply the introduced notions to a DAG, a residual is represented by a cross section,
defined as a set of value nodes separating the graph. The algorithm takes a set of operators and tries
to attach them to the current residual cross section (= target cross section at start), computing new
values on the way. Attaching nodes from above, i.e. using the residual in order to compute new values
from it, corresponds to the descriptive map (e.g. len, getitem, urange and repeat operators in Figs. 3B
and 1). Attaching nodes from below entails an inversion of the involved operators and corresponds
to parts of a feature (e.g. setitem operator in Fig. 1). Cycles can be introduced in this way, but
are removed once the graph is cut at its so-called bottleneck, defined as the shortest cross section.
For example, the sum of description lengths (DLs) of the bottleneck nodes in Fig. 1 is smallest
compared to all other possible cross sections. The cutting is performed as soon as the bottleneck
has a lower DL than the current residual (the blue nodes in Fig. 1). At this point the bottleneck
becomes the new residual and the algorithm continues iterating ad infinitum. Additionally, values
in nodes can be replaced by other values in other nodes and propagated through the graph (see e.g.
Fig. 4F-H). The search for the shortest compressing autoencoder in this way is exhaustive, i.e. all
directed graphs are being constructed ordered by their size, even though only those combinations
leading to the solution are shown in the figures.
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Fig. 1. The directed bipartite graph is cut at the most narrow cross section, called the bottleneck (red,
DL = 44 bits), leading to the shortest description of the target cross section (blue, DL = 251 bits). The
descriptive map, i.e. the graph from target to bottleneck containing the len, getitem and urange operators are
removed. The result is displayed in Fig. 3C. DL denotes the default description length defined in paragraph
Default descriptions.



4 Arthur Franz

Default descriptions A positive integer n ∈ N is described by the Elias delta code [2]. The length
l(n) of the (default) description is given by E(n) = blog2(n)c + 2 blog2 (blog2(n)c+ 1)c + 1 bits.
Including zero and negatives, an integer n ∈ Z has DL l(n) = E (2 |n|+ 1). Rational numbers x
are described by a pair of mantissa m ∈ Z and exponent a ∈ Z, x = m · 10a. Chars take the
fixed amount of 8 bits relating to the ASCII table. Strings s carry the DL l(s) = E (|s|) + 8 |s| by
describing their length |s| and then each char separately. Similarly, for arrays, lists, tuples and sets
their lengths are described following the elementwise description of their contents.

2 Results

2.1 Centralization

Consider a set of one-dimensional data, x = {x1, . . . , xn} sampled from a Gaussian X ∼ N (µ, σ).
Centralization refers to the subtraction of the sample mean x̂ = 1

n

∑n
i=1 xi from every xi: x

′
i = xi−x̂.

This preprocessing step is meaningful if σ � µ, i.e. the cluster center is a large number relative to
the standard deviation. Centralization transforms n large numbers xi into one large number x̂ and
n small numbers x′i.

This example consists of of the target cross section x being an array of n = 1000 i.i.d. samples
taken from N (143, 1) and a precision of 4 decimals (Fig. 2). As described Section 1, all sorts of
operators are attached to the target from above and from below, leading to the computation of the
sample mean 〈x〉 in Fig. 2A, followed by an inversion of the add operator using that target x and
the just computed mean 〈x〉, i.e. the “error” is E = x − 〈x〉 (denoting elementwise subtraction of
〈x〉 ≈ 143 from the array x, Fig. 2B). Since the significand of the entries in x have 7 digits and
the error merely 4 the DL of the error is much lower than that of the target, l (E)� l(x). Finally,
the mean operator is removed since it is part of the descriptive map (during bottleneck cutting as
in Fig. 1). It was merely helpful in computing the residual but does not belong to the description
of the target (Fig. 2C).The residual cross section consisting of one big number 〈x〉 and n smaller
numbers x− 〈x〉 is shorter, i.e. compression has been achieved.

mean

mean

add add

(A)
(B) (C)

Fig. 2. Data centralization x → x− 〈x〉 performed by WILLIAM, shown as a series of operators attached
to target data array x.
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2.2 Outlier detection

Fig. 3 shows a target cross section consisting of a list of 25 chars ’a’ and a single char ’b’ at index 18
in the first value node, and the number 1 in the second value node, also called vacuum node, since
it is merely a helper node and not to be compressed. The final residuum consists of of leaves in Fig.
3C, i.e. the value nodes 1, 26, ’a’, 18 and ’b’. Since the residuum’s DL is shorter than that of the
target (see also Fig. 1), compression has been achieved and the outlier ’b’ has been filtered out. Note
how the description of the data becomes meaningful and interpretable after proper compression: a
verbal description of the target as “a list with length 26 consisting of letters ’a’ with a letter ’b’ at
index 18” corresponds to the retrieved leaf values.

len urange

(A) (B) (C)

compression 
rate: 0%

compression 
rate: 0%

compression 
rate: 80%

['a',..., 'a', 'b', 'a',...,'a']

len

getitem

repeat

urange

['a',..., 'a', 'b', 'a',...,'a']

['a',...,'a']

['a']

repeat

setitem

['a',..., 'a', 'b', 'a',...,'a']

['a',...,'a']

['a']

'b'

Fig. 3. Outlier detection. (A) and (B) show how various operators are applied to the blue target cross
section, leading to a “cleaned” list consisting of chars ’a’ only. (C) The cleaned list is used to invert
operator setitem yielding the index 18 and thar char ’b’.

2.3 Linear regression

Fig. 4 shows how the target cross section consisting of x and y is compressed incrementally. Through
a series of steps the value nodes of the target x and y are connected, hence instead of both being
described independently y is described in terms of x which reduces the DL. Subplots (A)-(D) show
how the numbers 1, 2, 4 and 16 are subtracted from y in order to centralize the data. As we have
seen in Subsection 2.1, this process leads to compression: the residual is shorter than the target
l (2x+ 2 + ε) + l (16.0) + l (x) < l (y) + l (x). x is also a leaf, describing “itself”, neglecting the
comparatively short description of the operators. Note that there is no specialized optimization
involved here. The numbers 1, 2, 4 and 16 are computed by using the add-operator applied to the
existing value nodes, e.g. 16 = add(8, 8), starting with the vacuum 1 (not shown in the figure).
Subplot (E) uses the value node x and subtracts it from the residual node 2x + 2 + ε. Overall the
residual cross section (leaves) is shorter than the previous residual: l (x) + l (x+ 2 + ε) + l (16.0) <
l (2x+ 2 + ε) + l (16.0) + l (x). Subplot (F) shows that the target node x is compressed further by
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Fig. 4. Linear regression performed by WILLIAM. x is an array of length n = 1000 with values ranging
between −10 and 10 in steps of 0.2, ε is an array of n i.i.d. samples from the standard normal distribution
N (0, 1) and y given by 2x+ 18 + ε (see Fig. 7A). The target is incrementally compressed.
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subtracting it from the x+ 2 + ε node. Note that x and y are treated completely equally as target
nodes that are to be compressed. There is no special meaning of “dependent” and “independent”
variables involved here as usually in regression tasks. Subplots (G) and (H) achieve even more
compression by replacing 16 to 17 to 18 and propagating this change through the graph. Fig. 7A
visualizes how the various estimates (red dashed lines) incrementally fit the data. These estimates
are obtained by setting all leaf arrays (=“errors”) to 0.

2.4 Linear classification

add

xor

lessthan

1.0

add

add

add

(A) (B)

(C)

compression
rate: 10.5%

compression
rate: 4.0%

(D)

compression
rate: 9.6%

compression
rate: 21%

prediction classification error

Fig. 5. Classification performed by WILLIAM. y is an array of 2 classes, True and False, color coded in Fig.
7B. x is an array of i.i.d. samples taken from N (3.5, 1) for class True and from N (6.5, 1) for class False.

Fig. 5 shows how an array of data x is “fitted” the array of classes y (see Fig. 7B for the
distribution of x). As before, subplots (A)-(C) centralize x. In (D) a prediction p = (x − 4 < 1)
is generated and subtracted from the class array by the elementwise xor-operator. Compression is
achieved due to the fact that the error y XOR p contains True values only if the prediction goes
wrong, i.e. a few times in a good classifier. A boolean array with significantly fewer True than
False values has a shorter description than an array with a balanced number of True’s and False’s,
due to the following reason. There are

(
n
k

)
ways of distributing k True’s in an array of length n

hence providing an index i of the permutation together with k and n constitutes a full description
of the array. This permutation-based method is part of the default descriptions in WILLIAM. In
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sum, compression in classification is achieved by replacing array of classes y containing a balanced
number of True’s and False’s by an unbalanced error array having a shorter description.1

2.5 Decision tree classification

lessthan lessthan

insert

(A) (B)

compression 
rate: 0%

compression 
rate: 6.5%

a['','',...,''] a[T,T,...,F] a['s','s',...,'s']

a[0.2,0.2,...,1.8]

a['c','c',...,' v']
a[T,T,...,F]

a['s','s',...,'v']

a[0.2,0.2,...,1.8]

a['s','s',...,'v']

Fig. 6. A first step of decision tree classification. The data is taken from Python’s scikit-learn Iris Dataset
of three different types of flowers, see Fig. 7C. The target cross section (blue) consists of the flower classes
setosa (’s’), versicolour (’v’), and virginica (’c’) in array y. The a[...] notation stands for arrays. The float
array x denotes the petal width factor. By applying the threshold 1.0 the setosa types (leaf a[’s’,’s’...,’s’])
are separated from the other two types (leaf a[’c’,’c’,...,’v’]).

Fig. 6 shows the first step in decision tree classification. In subplot (A), lessthan creates a boolean
array denoting petal widths smaller than 1. In subplot (B) the insert-operator is inverted: it inserts
the array a[’s’,’s’...,’s’] into array a[”,...,”] of empty strings at the indices denoted by the boolen
array a[T,T...,F]. The remaining indices are filled by a[’c’,’c’,...,’v’]. As can be glanced from Fig. 7C
all setosa flowers have petal width < 1 and all the others have petal width ≥ 1. Therefore, setosa is
separated from the rest by this decision tree step. This constitutes compression since the original
target y consists of all three types of flowers and the permutation-based description is therefore
longer due to the larger multinomial coefficient

(
n

k1 k2

)
as compared to two types of flowers in

a[’c’,’c’,...,’v’] and a single type in a[’s’,’s’...,’s’]. Here only the first decision tree separation is shown
but it can be continued using other factors to separate the a[’c’,’c’,...,’v’] array. Note that neither
the Gini coefficient nor any other particularities of decision tree classification are used to perform
this “training” step. There is no need for measuring the dispersion of values by the Gini coefficient
since the permutation-based code automatically becomes shorter if there are fewer different classes
present in an array and/or the classes are not represented uniformly.

1 It can be shown that l
((

n
k

))
+ l (k) + l (n) < n if k � n.
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(A) Linear regression

(A)
(B)
(C)

(D)

(E)

(F)
(G)

(H)

(B) Linear classification

(C) Decision tree classification

Fig. 7. (A) Estimates (red dashed lines) incrementally fit the linear regression data (the letters (A)-(H)
correspond the subplots of Fig. 4). (B-C) Distribution of data for classification, the class is color coded.

Discussion

In this paper we have demonstrated that various machine learning algorithms can be viewed as
performing data compression as has been suggested previously in theory. In particular, their core
functionality emerges as a special case of WILLIAM’s general performance without being specifically
tuned to these algorithms. WILLIAM neither uses any specialized ML optimization nor any other
heuristics for that matter and is developed in a fully general fashion according to IC theory. This
generality enables WILLIAM to deal a wide range of tasks beyond machine learning, as reported in
[4]. Nevertheless, these examples had to be rather simple mainly due to the following limitations.

Limitations

Accumulation of description overhead Since IC proceeds greedily, there is no mechanism for avoiding
the accumulation of overhead, as discussed in [3]. In particular, eq. (1) entails an overhead of the
order O (s · log l(x)) where s is the number of compression steps. For example, in the regression
case, nothing hinders the algorithm from keeping subtracting 1 from the target array achieving
some compression at every step. Currently, such values are being replaced by newly generated
values and propagated through the graph (see Fig. 4F-H, where the value 16 is replaced by 17,
since 17 has been previously generated by add(16,1)). Even though this propagation solution helps
combat the overhead accumulation, it would be helpful to have theoretical guarantees for avoiding
overhead altogether.



10 Arthur Franz

Alternative descriptions In many cases, it is desirable to consider alternative short descriptions of
data. IC theory only shows how to search for some short description, but not for several ones. One
option is to search for many incremental strands in parallel which would however put additional
computational strain on performance. A different option is to allow the lack of progress in further
compressing the first short description to guide the search for other descriptions – a strategy appar-
ently used by problem solving in the psychology of insight [6]. Again, theoretical guidance would
be of great help in this endeavor.

No reuse of successful functions An important way of accelerating the algorithm is to reuse success-
ful, i.e. compressing combinations of operators. Currently, a DAG of operators can be used to define
a composite operator, which can be inserted an used just like a primitive operator. This makes our
graph a hypergraph – there can be graphs inside the nodes. However, it is unclear which subgraph
of a solution is to be encapsulated and how it is to be reused. Essentially, this issue comes down to
the non-trivial task of finding a theory of memory and its retrieval.

Computing power and parallelization On a positive note, while thinking through many tasks over
the last years, it appears that most interesting tasks do not appear to demand steps requiring deeper
graphs than 6 or 7 operators until some compression is achieved. Currently, WILLIAM manages to
search exhaustively through graphs of depth 4-5 running on pure Python code. Rewriting core parts
on a faster language in the back end and parallelization could boost the performance considerably.

Conclusion

If the discussed limitations can be overcome both in theory and practice the results show a promising
path to create a general algorithm for solving machine learning problems and going beyond them.
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