
Introducing WILLIAM: a system for inductive
inference based on the theory of incremental

compression
Arthur Franz∗

af@occam.com.ua
Michael Löffler∗
ml@occam.com.ua

Alexander Antonenko∗†
aa@occam.com.ua

Victoria Gogulya∗
vg@occam.com.ua

Dmytro Zaslavskyi∗‡
dz@occam.com.ua

∗Odessa Competence Center
for Artificial intelligence

and Machine learning (OCCAM)
Odessa, Ukraine

†dept. of Mathematical Support
of Computer Systems,

Odessa National Mechnikov University,
Odessa, Ukraine

‡Faculty of Mathematics, Physics
and Information Technologies,

Odessa National Mechnikov University,
Odessa, Ukraine

Abstract—We introduce WILLIAM — a new system for
data compression that is based on a formal mathematical
theory of incremental compression. The theory promises to
find short descriptions in an incremental and efficient way
while still being applicable to a wide range of data. We have
used abstract syntax trees of selected Python operators in
order to define a representation language. We present some
practical tests of the theory with encouraging results.

Index Terms—incremental compression, data compression,
Kolmogorov complexity, inductive inference

I. INTRODUCTION

The ability to compress data is an important problem
in both science and industry. Apart from saving memory
space, data compression is tightly tied to inductive infer-
ence and artificial intelligence, since it requires intelligence
in order to find regularities in data, which in turn leads to
short representations (see [1], [2]).

Kolmogorov has proved that the concept of the shortest
description is well defined and depends on the description
language only up to an additive constant. The length of the
shortest description is known as the (plain) Kolmogorov
complexity of the data, which corresponds to optimal com-
pression. In spite of substantial efforts in this area, progress
is impeded by the fact that compression is possible only
when a description, i.e. program, is found that captures
regularities in the data. However, any language that is
able to express all possible programs is Turing complete,
such that the search within such a vast space becomes
intractable.

In theory, there exist universal search methods, such as
Levin Search, that are able to find short descriptions of data
and require the execution of all lexicographically ordered
programs until a solution is found. For the better or worse,
Levin Search has the optimal order of computational
complexity [3]. Nevertheless, the obvious slowness of this
method, hidden in the big “O” notation, seems to be the
price for its generality.

In order to alleviate that problem, we have developed
a theory of incremental compression [4], that finds in-
termediate, increasingly shorter descriptions of data. Re-
markably, it is guaranteed to find the shortest description
(to some precision) by assembling it from short and

mutually orthogonal features. In spite of the fact that those
intermediate descriptions are incomputable, they can be
approximated in practice, where the whole compression
algorithm promises to be both general and efficient.

In this paper, we summarize the theoretical results ex-
pressed in the language of algorithmic information theory
and also present a practical implementation of the proposed
algorithm, WILLIAM: a Python-written system for data
compression and inductive inference. Since this is work
in progress, we include some modest results and discuss
them in relation to the theory and future work.

II. INCREMENTAL COMPRESSION

Consider strings made up of elements of the set B =
{0, 1} with ε denoting the empty string. B∗ denotes the
set of finite strings over B. Denote the length of a string x
by l(x). Since there is a one-to-one map B ↔ N of finite
strings onto natural numbers, strings and natural numbers
are used interchangeably.

The universal, prefix Turing machine U is defined by

U (〈y, 〈i, p〉〉) = Ti (〈y, p〉) , (1)

where Ti is i-th machine in some enumeration of all
prefix Turing machines and 〈., .〉 is some one-to-one map
N ×N ↔ N . This means that f = 〈i, p〉 describes some
program on a prefix Turing machine and consists of the
number i of the prefix Turing machine and its input
parameter p and y is some additional parameter. We will
use the shortcut U (〈x, f〉) ≡ f(x). The conditional (prefix
Kolmogorov) complexity is given by

K(x|y) := mins {l(s) : U (〈y, s〉) = s(y) = x} (2)

This means that K(x|y) is equal to the shortest de-
scription of string x given string y on a universal, prefix
Turing machine. The unconditional (prefix Kolmogorov)
complexity is defined by K(x) ≡ K(x|ε). Up to this point,
we have followed the standard definitions as given in e.g.
[2].

Our theory of incremental compression has been pre-
sented in [4], which we summarize here.



Definition 1: Let f and x be finite strings and Df (x)
the set of descriptive maps of x given f :

Df (x) = {f ′ : f (f ′ (x)) = x, l (f) + l (f ′ (x)) < l (x)}
(3)

If Df (x) 6= ∅ then f is called a feature of x. The
strings p ≡ f ′(x) are called parameters of the feature f .
f∗ is called shortest feature of x if it is one of the strings
fulfilling

l (f∗) = min {l(f) : Df (x) 6= ∅} (4)

and f ′∗ is called shortest descriptive map of x given f∗

if
l (f ′∗) = min {l(g) : g ∈ Df∗(x)} (5)

Lemma 1:
Let f∗ and f ′∗ be the shortest feature and shortest

descriptive map of a finite string x, respectively. Further,
let p ≡ f ′∗ (x). Then

1) l (f∗) = K (x|p) and
2) l (f ′∗) = K (p|x).
Theorem 1 (Feature imcompressibility):
The shortest feature f∗ of a finite string x is incom-

pressible:

l (f∗)−O (1) ≤ K (f∗) ≤ l (f∗) +O (log (l(f∗))) . (6)

Theorem 2 (Independence of features and parameters):
Let f∗ and f ′∗ be the shortest feature and descriptive

map of a finite string x, respectively. Further, let p ≡
f ′∗(x). Then,

K(f∗|p) ≈ K(f∗), (7)
K(p|f∗) ≈ K(p), (8)
K(f∗, p) ≈ K(f∗) +K(p) (9)

where the “≈” sign denotes equality up to logarithmic
terms in complexity.

We conclude that features and parameters do not share
information about each other, therefore the description
of the (f∗, p)-pair breaks down into the simpler task of
describing f∗ and p separately. Since Theorem 1 implies
the incompressibility of f∗ and U (〈p, f∗〉) = x, the task
of compressing x is reduced to the mere compression of
p.

Let us describe the compression scheme of the binary
string x. Denote p0 ≡ x, and start an iterative process
of compression: let f∗i+1 be a shortest feature of pi, f ′∗i+1

is a shortest corresponding descriptive map and pi+1 =
f ′∗i+1 (pi). We will continue this process until some ps
is not compressible (for example, ps = ε) and obtain
x = f∗1 (f∗2 (· · · f∗s (ps))). One of the main theoretical
results shows that this representation approximates the Kol-
mogorov complexity up to logarithmic terms, i.e. achieves
near optimal compression.

III. DESCRIPTION OF THE ALGORITHM

In the following we will describe the current state of
WILLIAM, which is work in progress and will change
considerably in future. The main goal of this project
is to implement our theory of incremental compression
in practice and to construct intelligent agents using the

inductive reasoning capabilities that follow from the ability
to compress data. For example, it has been shown for-
mally that combining optimal compression (in the form of
Solomonoff induction [5], [6]) with reinforcement learning
leads to maximally intelligent agents [1].

A. The alphabet

As a language we have used trees of Python op-
erators, which can be converted to abstract syntax
trees, compiled and executed by Python itself. At the
core, we use an alphabet of currently 36 Python op-
erators, such as range, add, mult, join, map,
equal, and, or, ifelse etc. Each operator can be
called and knows its arity and type specifications, i.e. the
types of variables that can be it’s input and output. The
currently allowed types are integer, float, string, bool and
callable functions, which can be put into lists and tuples.
Each operator knows whether and how it can be inverted.
For example, range(4) = [0,1,2,3], thus given the
list as induction target, the input 4 can be inferred.
Often, an operator can only be inverted if conditioned
on some of its inputs. For example, add(3,4) = 7
can be inverted, if the target 7 is given and the first
or second input is conditioned on (i.e. it can be solved
for the other input). Sometimes inversion leads to several
solutions. For example, if concat(a,b) = [0,1,2],
then possible solutions are a = [], b = [0,1,2];
a = [0], b = [1,2]; a = [0,1], b = [2] or
a = [0,1,2], b = []. Therefore, the inversion of
operators is implemented as a Python generator, which
yields all possible results. The resulting language defined
by that alphabet is completely functional (not declarative).

B. Composite operators

The alphabet can be dynamically extended by defining
trees made up of them, so that a tree can act as a single op-
erator. Such new operators are called composite operators.
They can be executed and also inverted depending on the
invertibility and conditions of the participating operators
at the nodes. In order to invert a composite, it has to be
computed, which if its inputs have to be given, i.e. are
conditioned and which can be computed. For example, the
composite function y = x1− x2 + x3 ∗ x4 can be inverted
given 3 out of 4 variables, which lead to the inverse
functions F1 = (y−x1+x2)/x4, F2 = (y−x1+x2)/x3,
F3 = y−x1−x3 ∗x4 and F4 = y+x2−x3 ∗x4. A special
activation propagation algorithm has been deployed in
order to implement such composite inversions. Composites
can then be reused as single operators at the nodes of even
larger trees – hypertrees.

C. Tree search

Given the alphabet with its respective arity and type
specifications an exhaustive search for trees made up of
those operators can be performed with the constraint that
the output of an operator is fed into an input of another
operator with a compatible type specification. Two versions
of tree search have been implemented. The first is a depth-
first search of all perfect trees at given depth. The second
version is a description length sorted (=biased) tree search
where trees of increasing description length are found. This



is important since we want to find simple trees first. For
example, a degenerate, non-branching depth-4-tree of four
unary operators may be simpler than a general depth-3-
tree.

D. Search for parameters

After some tree has been constructed, it is used as a
single composite operator and corresponds to a feature,
as defined in our theory. WILLIAM tries to find inputs
(=parameters) to the composite tree (=feature), such that
the output matches the target. There are three ways of
finding parameters that are currently implemented.

The first and the least efficient, tries to cycle through all
combinations of parameters. For example, if the composite
requires 5 integer parameters then all integer combinations
up to a certain maximal size are attempted.

The second way uses the reasoning of the incremental
compression theory: it uses the composite operator (feature
f ) and the target x in order to compute the parameters
p. In general, some parameters have to be conditioned
on, while the others can be inferred, which corresponds
to solving an equation for unknown variables. WILLIAM
takes those parameters that have to be known and computes
all combinations like in the first version and infers all the
other parameters by inverting the composite. Essentially,
the descriptive map f ′ is given by the conditioned parame-
ters pc and the composite tree itself (for example, inversion
of add(pc, pi) = 7 is possible, if pc is known).

The third way is to use so-called biased permutation,
where the generation of parameters is sorted by their
description length.

E. Description length

The description length of various data sets is computed
in the following way. Integers n are encoded with the Elias
delta code [7], whose length is

l(n) = blog2(n)c+ 2 blog2 (blog2(n)c+ 1)c+ 1 (10)

Floats are approximated by fractions up to a given preci-
sion by minimizing the sum of the description lengths of
nominator and denominator, which are integers. Chars are
described by the Elias code of their ASCII number. The
description length of iterable structures such as strings, lists
and tuples consisted of basic elements is simply the sum
of the lengths of each element plus description length of
the length of the iterable structure.

Beyond data sets, elementary operators and the trees of
them that define composite operators have to be described.
The information needed to specify an elementary operator
is simply dlog2(N)e where N is the length of the alphabet,
currently N = 36. Since each operator knows the number
if its inputs/children, a tree made up of operators can be
described by assigning a number 0, . . . , N − 1 to each
operator and writing those numbers in sequence, assuming
a depth-first enumeration order.

F. Inductor and incremental compression

Currently, WILLIAM can function in two modes. In the
universal search mode, WILLIAM acts as simple inductor
that find descriptions of a target string x in the form
of an operator tree f and its parameters p, while trying

to minimize the total description length l(f) + l(p). In
the incremental mode, WILLIAM tries to find trees f
with short description lengths and compute parameters by
inverting the tree. Here, only l(f) is minimized while p is
allowed to be long, merely bounded by the compression
condition l(f) + l(p) < l(x). The parameter list then
becomes a new target.

More precisely, let x be an initial target, which is
represented in the form of x = f1 (p1) where f1 is
an operator tree and p1 is a list of parameters fulfill-
ing l (f1) + l (p1) < l (x). This procedure is repeated:
p1 = f2 (p2) , p2 = f3 (p3) etc. in accordance with the
idea of incremental compression to use short features.
In this way, we obtain a list of trees that can be exe-
cuted subsequently, and form a composition of functions
f1 (f2 (· · · fs (ps))) each fulfilling the compression condi-
tion l (fi+1)+ l (pi+1) < l (pi). We call such lists/rows of
trees alleys.

IV. EXPERIMENTS

In the following, we present some test cases of what has
been achieved.

A. Examples of induced functions

All trees up to depth 2 were searched through. We
choose some target, then run the inductor in the universal
search mode and give some examples of induced functions,
the number of attempts to find this representation and
compression ratio (in percents of target description length),
see Table I. The compression ratio is required to be greater
than zero, since we enforce the compression condition.
w/hints means that we have used hints by limiting the
set of basic functions in the inductor. In the condition
“without inversion” all parameter combinations up to a
certain threshold have been searched through exhaustively.
In the “with inversion” condition, some of the parameters
can be inferred by computing them from the target and
from the conditioned inputs.

It is quite evident that guessing both the function tree
and appropriate inputs to the tree is quite computationally
expensive. However, when inputs can be computed by
inversion, the search is much faster and also can solve
problems that could not be solved before. This reflects the
p = f ′(x) operation in the theory.

B. Example of an induced alley

Consider the target x from Table II. It is complex
enough, such that an exhaustive search for a representation
quickly becomes intractable. However, in the incremental
compression mode, WILLIAM can still find a solution. It
has first found a function f1 (a, b, c, d) (in the form of an
operator tree) and its parameter list p1 = [a, b, c, d]. Both
f1 and p1 are given in Table II and together they form the
representation

x = insert (range (0, 6) , 11, [12, 13, . . . , 22, 8, . . . , 8]) ,

which is shorter than the initial target x. In the current
version of WILLIAM, the new target is a concatenated
list of parameters (denoted by c(p1)), so at step two the
new target is set to

c(p1) = [0, 6, 11, 12, 13, . . . , 22, 8, . . . , 8] .



TABLE I
EXAMPLES OF INDUCED FUNCTIONS

Target Some induced function Attempts
without inversion

Attempts
with inversion Compression

’111111’
str(111111),
*(6,’1’)

not found,
1290

4,
8

53%,
57%

[1,2,4,8,16,32,64,128,256] power(2, range(9)) 669071 196 70%
’aaaaazzzzz’ 5 * ’a’ + 5 * ’z’ not found 2136 53%

[0.0,1.0,...,99.0] map(float,range(100)) 866, w/hints 3, w/hints 97%
[33,35,37,39,15,14,...,6] range(33,41,2)+range(15,5,-1) not found 3021 49%

TABLE II
EXAMPLE OF AN ALLEY

Denotation Function List of parameters
x [11,11,11,11,11,11,12,13,14,15,16,17,18,19,20,21,22,8,8,8,8,8]

f1 (a, b, c, d) , p1 insert(range(a,b),c,d) [0,6,11,[12,13,14,15,16,17,18,19,20,21,22,8,8,8,8,8]]
f2 (a, b, c, d) , p2 insert(range(a,b),c,d) [14,19,8,[0,6,11,12,13,14,15,16,17,18,19,20,21,22]]
f3 (a, b, c, d) , p3 insert(range(a),b,range(c,d)) [5,[14,19,8,0,6],11,23]

After running the inductor on the new target we obtain a
new feature f2 (a, b, c, d) and its parameter list p2 such that
c(p1) = f2 (p2). Using c(p2) as the new target we obtain
f3 (a, b, c, d) and p3. This process can be continued but
the inductor did not find a shorter representation of c(p3)
in this example. Overall, the final description of the target
x contains features (functions) f1, f2, f3, a parameter p3
and some information that allows to obtain initial versions
of pi from the concatenated forms c(pi), by saving the
indices of each parameter in the concatenated list c(pi).

V. DISCUSSION

Previously, we have developed a theory of incremental
compression that promises the existence of an efficient and
general data compression algorithm. In this publication,
we have sketched our new system WILLIAM that aspires
to realize that algorithm in practice. WILLIAM is much
more complex than described here, but a full description
of its functionality is beyond the scope of this paper. Still,
it is very much work in progress, so that we have been
able to demonstrate some modest capabilities for inducing
short descriptions on some examples without yet being able
to run a systematic comparison with industrial standards

for compression algorithms. Also, a detailed match to the
theory in order to test the derived theorems would be
useful as well as the further development of a computable
version of the theory. Nevertheless, the inductive capabili-
ties using alleys have shown the emergence of fairly deep
trees, which would be practically impossible to find using
exhaustive search. This is an encouraging confirmation of
the theory’s efficient compression abilities.

REFERENCES

[1] M. Hutter, Universal Artificial Intelligence: Sequential Decisions
based on Algorithmic Probability. Berlin: Springer, 2005. 300 pages,
http://www.hutter1.net/ai/uaibook.htm.

[2] M. Li and P. M. Vitányi, An introduction to Kolmogorov complexity
and its applications. Springer, 2009.

[3] L. A. Levin, “Universal sequential search problems,” Problemy
Peredachi Informatsii, vol. 9, no. 3, pp. 115–116, 1973.

[4] A. Franz, “Some theorems on incremental compression,” in Inter-
national Conference on Artificial General Intelligence, pp. 74–83,
Springer, 2016.

[5] R. J. Solomonoff, “A formal theory of inductive inference. Part I,”
Information and control, vol. 7, no. 1, pp. 1–22, 1964.

[6] R. J. Solomonoff, “A formal theory of inductive inference. Part II,”
Information and control, vol. 7, no. 2, pp. 224–254, 1964.

[7] P. Elias, “Universal codeword sets and representations of the in-
tegers,” IEEE transactions on information theory, vol. 21, no. 2,
pp. 194–203, 1975.


