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Abstract. Since compressing data incrementally by a non-branching
hierarchy has resulted in substantial efficiency gains for performing
induction in previous work, we now explore branching hierarchical com-
pression as a means for solving induction problems for generally intelli-
gent systems. Even though assuming the compositionality of data gener-
ation and the locality of information may result in a loss of the univer-
sality of induction, it has still the potential to be general in the sense of
reflecting the inherent structure of real world data imposed by the laws
of physics. We derive a proof that branching compression hierarchies
(BCHs) create power law functions of mutual algorithmic information
between two strings as a function of their distance — a ubiquitous char-
acteristic of natural data, which opens the possibility of efficient natural
data compression by BCHs. Further, we show that such hierarchies guar-
antee the existence of short features in the data which in turn increases
the efficiency of induction even more.
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1 Introduction

The question how humans succeed in deriving theories and explanations from
sensory data — the problem of induction — has long remained a mystery of human
cognition and philosophy of science. Because it is so central to human thinking, it
is essential to solve this problem for any attempt to build a generally intelligent
system. Fortunately, Solomonoff’s theory of universal induction [1,2] presents a
formidable mathematical solution to this thorny problem. However, it is incom-
putable and tractable approximations have remained elusive.

Nevertheless, for practical purposes, it seems sufficiently satisfactory if we
solve the problem of induction “merely” for data presented to us by the actual
physical world that we inhabit. For this purpose it is instructive to ask, why
for example are deep learning classifiers so successful although it can be shown
[3] that classifying arbitrary binary images with n pixels requires at least 2"
parameters in the neural network? And why is it hard for human subjects to
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find an algorithm that prints the digits of 7w given a sequence of its digits even
though the algorithm is fairly short compared to other gigabyte heavy software
programs written by humans? The world seems to present us with a small subset
of all possible data — a circumstance that can be exploited in order to increase
the efficiency of induction algorithms.

Lin and Tegmark [3] argue that properties like symmetry, locality and com-
positionality of real world data are key restrictions for that purpose and show by
“no-flattening theorems” that deep networks achieve their efficiency by exploit-
ing the compositionality of data. Further, as they argue, the polynomial structure
of the Hamiltonians in the fundamental laws of physics and the compositional
way that those laws are expressed when they generate real world data seems to
support the generality of this observation.

Indeed, as proven in our previous work [4], exploiting the compositionality of
data leads to an efficient incremental way of performing induction. In short', if
a bit string of data x is representable by a composition of computable functions
(Turing machines), x = f; o --- o f,,(€), then these so-called features f; can be
found in a greedy fashion (without backtracking), if we always look for the short-
est ones while compressing at least a little (which excludes identity functions).
The algorithmic entropy K (z) can then be obtained by

m

K(x)=Y_I(f;)+0(1) (1.1)

i=1

where all features are pairwise algorithmically orthogonal: I(f; : f;) = 0 for
all i # j. The features can be found by searching through pairs of programs
(f, f) such that f(f'(z)) = « and I(f) + I(f'(z)) < l(z) where the length of
the shortest descriptive map f’ is found to obey a fairly low bound I(f’) <
log K (z) 4+ 2loglog K(z) + O(1) as will be shown in Sect.5. In spite of this
success, the length of the shortest features is not bounded in any way, leaving
us with limited theoretical guarantees for the bound on the time complexity of
search. Further assumptions about real world data seem necessary in order to
obtain such a bound, which would be very helpful in order to boost the efficiency
of induction.

A remarkable property of our world seems to be that it has structure on all
scales. No matter how much we zoom in toward the microscopic world or zoom
out to the macroscopic world, we never seem to arrive at emptiness or a struc-
tureless distribution of matter. Typically, this scale invariance can be expressed
by power law correlation functions which are found to be ubiquitous in nature.
From avalanche distributions, noise spectra, letter sequences in natural language,
earthquake and solar flare frequency distributions, species extinction rates, traf-
fic jams, natural images and many more, power law correlation functions are
found virtually everywhere in natural data [5-7]. Further, we seem to possess a
theoretical justification of the multitude of power laws through the process of
self-organized criticality [5].

! For notation and definitions please consult the Preliminaries section below.
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In this paper, we show that by extending the present theory of non-branching
incremental compression to a branching compression hierarchy (BCH), the
mutual algorithmic information between two substrings decays like a power law
function of the distance between the substrings. We proceed to show that this
circumstance leads to a bound on the feature lengths, which increases the effi-
ciency of incremental compression.

2 Preliminaries

Consider a universal prefix Turing machine U. Strings are defined on a finite
alphabet A = {0, 1} with e denoting the empty string. Logarithms are taken on
the basis 2. A* denotes the set of finite strings made up of the elements of A. Since
there is a one-to-one map A* < N of finite strings on natural numbers, strings
and natural numbers are used interchangeably. For example, the length I(n) of an
integer n denotes the number of symbols of the string that it corresponds to. The
map (-, -) denotes a one-to-one map of two strings on natural numbers: A* x A* «
N. The corresponding map for more than two variables is defined recursively:
(z,y,2) = ({x,y),z). In particular, (z,e) = z. Since all Turing machines can
be enumerated, the universal machine U operates on a number/string (n,p) by
executing p on the Turing machine T;,: U ((n,p)) = T, (p). Similarly, a string
y is applied to another string a by applying the yth Turing machine: y(z) =
T,(z) = U ({y,x)). When we speak about the length of a function/feature f, we
mean the length of the binary representation of the index y of the respective
Turing machine T, = f in the enumeration. The prefix complexity K (x|y) of x
given y is defined by K(x|y) = min{l(z) : U ({z,y)) = z} and K(z) = K(zle).
The complexity of several variables is defined as K(z,y) = K ({(z,y)). The “4”
sign above equality or inequality signs denotes that the relation is valid up to a
constant that is independent of the involved variables. The information contained
in z about y is defined as I(z : y) = K(y) — K(y|x). However, sometimes we
will refer to it as mutual information for the sake of brevity although it is not
symmetric. When a string is a concatenation of substrings, © = z1x9 - - x,, by
distance between substring z; and z; we mean the index distance d;; = |i — j|.

3 Branching Compression Hierarchies Create Power
Laws

Consider a binary string x that can be computed by a hierarchy of functions,
Fig. 1. In this section we show that if the functions are the shortest features of
their respective substrings, then the information of a substring x; about another
substring x; of x will be bounded by power law function of their distance:

I(ZL’Z : l’j) S d(.’ﬂi,(ﬂj)iconﬁ

The main idea is the following. Assume that a fraction of the information
in a string is lost as we go along an edge in a graph (information dissipation),
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Fig. 1. A branching compression hierarchy (BCH). The path from the root to some leaf
is displayed by solid arrows. A bit string = (whole upper chain, only the part computed
from g2 is shown) is computed by concatenating substrings, one of which is shown as go.
Those substrings are computed by their shortest features f; and respective parameters,
qi—1 = fi(pi), that are found along the path. Since only a fraction oy = K(pi)/K(q)
of the information in ¢; remains at each level [, the information contained in string ¢
about go decays exponentially with its height [. Note that each arrow (both dashed and
solid) corresponds to a different feature, each g1 in the first level computes different
substrings of x.

since only a part of the string serves as input to the function at the edge. Then the
information of a string about another will decrease exponentially with the length
of the path between the strings. If the mutual information of two leaf strings
is mediated only via the earliest common ancestor in a tree, then it will drop
exponentially with the height of that ancestor. Further, the distance between
two leaves increases exponentially with the height of their common ancestor.
Inserting two exponential functions into each other leads to the power law. The
idea that branching hierarchies create power laws is not new [7], but this is to
the best of our knowledge the first time that it is shown in all generality for
algorithmic information and arbitrary data.

Definition 1 (Branching compression hierarchy). Let T be a perfect tree
with a varying branching factor, F = {f;} a set of computable functions for each
edge in the tree and qp a binary string at the root node. For any path from the
root to a leaf, index the functions as fp,..., f1 and compute fi(p;) = q—1 for
each l = h,... 1, where p; is some substring of q;. Let further f; be the shortest
feature and p; its respective parameters of qi—1 (see [4] for definitions). Then,
the triple H = {T, F,qp} is called a branching compression hierarchy. The

fraction
_ K(p)

'T K@)

shall be called information dissipation rate.

(3.1)
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An Ezample. Consider a binary image of a triangle. In the first compression level
the features could encode lines while the parameters encode the coordinates of
the line ends. Then f; = line and p; = x1y122y2 encode one of the sides, other

features f1(2) and fl(g) at the same level encode the other sides with their respec-

tive parameters p?) = xoysx3ys and pg?’) = x3y3x1y1. All those parameters are

concatenated to q; = p1p§2)p§3) = T1Y122Y2T2Y2T3Y33Y3x1y1. Lhis string is
further compressed by fo = copy2 which could be a function that copies consec-
utive entries, such that ¢ = fo(p2), where ps = x1y122y223y3. This concludes
a two-level branching hierarchical compression of a triangle leaving us with the
coordinates of the corners as a concise representation of a triangle.

Lemma 1 (Exponential information decay). Let H be a BCH according to
the above definition. We assume:

1. The information content in the root node qn is uniformly distributed through

q; for each l:
K K
(plan) _ Kp) _ (3.2)
K(aqlqn) K(ai)
2. The root qn, does not contain any information about any feature below in the

path I(qn : fi) =0 for alll < h.

Then the information content in qp about a leaf qo is given by

Ew

I(gn = q0) = K(an) - [[eu (3.3)

1

Of course, there is no guarantee that assumption (1) holds, but it can be
expected to hold on average, since after all, the information in ¢; has to go
somewhere, since z is ultimately computed from it. If it doesn’t go into p; then
into some p; on another path to x. Assumption (2) is discussed below.

Since 0 < a; < 1, Eq. (3.3) constitutes an exponential decay of information
in a string g5 about a leaf gy as its height A increases. In the special case of
a = oy = const the decay I(qp : qo) = K(qn) - o becomes apparent. What can
we say about the information two arbitrary substrings y and z about each other?

Lemma 2 (Information of strings about each other). Let two strings y
and z be conditionally independent given string a:

K(y,zla) = K(yla) + K(z|a) (3.4)

Then the information of y about z is bounded by the information of a about z:
+

IHy:2)<I(a:z) (3.5)

It should be noted that the assumptions of conditional independence in
Lemma?2 and assumption (2) in Lemmal merely reflect that the only link
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between the substrings is the common ancestor. Otherwise, two arbitrary sub-
strings of an arbitrary string certainly can carry more information about each
other.

We can now state our main theorem.

Theorem 1 (Power law information decay in BCHSs). Let H be a« BCH
with the assumptions of Lemma 1 and each pair of leaves conditionally indepen-
dent given their common ancestor q, at height h. Let further d;; = |i — j| be the
index distance between to substrings x; and xj. Then the information contained
in x; about x; is bounded by a power law function of the distance:

+ (v
(@i 25) < K(qn) - ;" (3.6)

where v; = logy(1/ay) > 0, b the average branching factor of H and oy the
information dissipation rate at level [.

Indeed we observe that the algorithmic information carried by one substring
about another decays according to a power law function of their distance. This
circumstance makes information storage local in the sense that mutual infor-
mation between substrings exists mostly for nearby substrings. In the following
section we will show that the locality of information entails the existence of short
features in the whole data string.

4 Information Locality Implies Short Features

Since nearby substrings contain most information about each other in a BCH,
we now prove that this implies compressibility of the concatenated string, which
in turn implies the existence of a feature of the whole string.

Lemma 3 (Information of a string about another implies compressibil-
ity). Let x andy be two strings with x carrying information about y: I(xz : y) > 0.

+
Then the composite string is compressible: K (zy) < l(xy).

Theorem 2 (Compressibility of substring implies existence of feature).
Let x be a string partitioned into y and p. Let further q be the shortest program
with U(q) =y and X\ the program that computes y from q and specifies where to
insert it into x: AM(q,p) = x. If y is l[(X)-compressible, K(y) +1(\) < (y), then
is compressible as well and there is a feature f and a corresponding descriptive
map [’ of x such that

f(fi(@) ==
and I(f) < l(y).
The gist of the results in this and the previous section can be summarized
as follows. A BCH computes several strings from a single one at each level of

the hierarchy which creates mutual information between the substrings at the
leaves. In this section we have shown that it implies the existence of a feature of
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the whole string (concatenation of all leaves) such that the length of the feature
is bounded by the length of just two neighboring leaves. Since the length of the
leaves is generally much smaller than the length of the whole string, we have
effectively derived a low bound on feature length. In other words, if our data
breaks down into many small pieces, the size of the contained regularities is
limited by the length of those little pieces.

5 A Tighter Bound on the Length of the Shortest
Descriptive Map

This section is independent from the previous ones but aims at the same goal:
the reduction of the time complexity of compression, which is directly tied to
the lengths of features and descriptive maps. While in the previous sections we
were occupied with the length of the features, this section goes back to deriving
a tighter bound on descriptive maps than in our previous work [4, Theorem 6].

+
There, we have derived the bound I(f’) < 2log K (z) + 4loglog K (z) for the
shortest descriptive map f’. Here, we managed to get rid of the factor two.

Theorem 3 (Bound on the length of descriptive map). Let f’ be the
shortest descriptive map of a finite string x. Then the following bound holds on

1(f): N
I(f") <log K(x) + 2loglog K (z) (5.1)

and the number of high values of I(f') is low in the sense
Plz:I(f') > s} <s%27° (5.2)
for any s and for all computable and semicomputable distributions P.

Note that this result is valid not only for BCHs, but for incremental compression
in general.

6 Discussion

We have shown that data generated by a hierarchy of functions create power
law distributed algorithmic information between two pieces of the data. Since
correlation is a simple form of algorithmic information, the ubiquity of power
law correlation functions in nature constitutes evidence that natural data could
successfully be represented by hierarchies.

We have further shown that such structures imply that the data generated
like this possesses simple features, i.e. that structure can be found at the smallest
scale. This is crucial for the efficiency of induction algorithms since it allows us
to find features whose description is bounded by the size of that scale. In other
words, we can look at small pieces of the available data where we can find
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structure, derive a feature from that and continue to incrementally compress the
data greedily.

One may wonder, if a BCH has troubles solving tasks like the induction of
a program for 7 given a sequence of its digits, why is it that human program-
mers don’t have particular difficulties in specifying such a program? However,
such a program is never induced from the digits of 7, but rather deduced from
background knowledge about geometry and other, i.e. from other sources of
information. Hence, such a task would be an unfair test for both algorithmic
and human induction capabilities.

In future work, it would be interesting to derive an actual compression algo-
rithm for hierarchically structured data and compare its time complexity to
non-branching incremental compression and to non-incremental Levin search.
Even more interesting would be to try to implement such an algorithm which is
current work in progress.

A Proofs

Proof (Lemma 1). Recall that f; and p; are the shortest feature and parameter

of ¢i_1 and therefore independent, K (g_1) = I(f;) + K (p;), as was proven in [4,
Corrolary 2]. From Eq. (3.1) we obtain

H+

1(f1) + K(po = l(fl) + oK (q) ZUf1) + a1 (I(f2) + a2 K (g2))

== K(qh)Haz + Z I(fm) 1:[ o7
=1 m=1 =1

K(q0)

(A1)

Since f; and p; cannot be made dependent by conditioning, we get K (q;—1|qn) =
K(filgn) + K(pi|qn)- Due to assumption (2), the first term becomes K(fi|qn) =
K(f)) £ 1(f;). Therefore, the conditional version can be computed analogously
to Eq. (A.1):

-1

h h
K (qolan) = K (qnlan) H Z (fm) 1] (A.2)

3

N
Il
i

However, since K (qn|gn) = O(1) we obtain for the information in g, about go:

Em

I(gn : q0) = K(q0) — K (qolqn) == K(qn) -

Proof (Lemma 2). We can in general expand [8, Theorem 3.9.1, p. 247]

K(y,zla) £ K(yla) + K (z]y, K (y), a)

franz@fias.uni-frankfurt.de



On Hierarchical Compression and Power Laws in Nature 85

and insert it into the independence relation Eq. 3.4. This leads to

K(zla) £ K (2ly, K (y), a) < K(2ly)

where the last inequality follows from the fact that conditioning can only reduce

the description length of z [8, Theorem 2.1.2, p. 108]. Subtracting this inequality
+

from K(z) yields K(z) — K(z|a) > K(z) — K(z|y). Now we insert the definition

of mutual information I(a : z) = K(z) — K(z|a) on both sides from which the

claim follows. O

Proof (Theorem 1). First, from the result in Eq. (3.3) and Lemma 2 it follows that
I(z; : xj) decays exponentially with the height h of their common ancestor gy,

/\+

h
I(z;:zj) < H (A.3)

under our assumptions. Consider that the maximal index distance between
leaves in a perfect tree increases exponentially with the height h of the common
ancestor:

h
dij < H?)z (A.4)
=1

where by is the average branching factor at level [ of the tree. By defining the total

1/h
average branching factor b = (Hl 1 bl> > d; J/ " we can solve for h > logz(di;)

and compute:
h logg (diyj) logg (dij)
logg (H oq) < Z logg(ay) Z v = — (v) logg(di;) = logg (di_j@))
1=1 1=1
where v; = logz(1/aq) > 0. Inserting this into Eq. A.3 concludes the proof. O
Proof (Lemma 3). Consider the general expansion [8, Theorem 3.9.1, p. 247]
K(wy) £ K(2) + K (y|o, K (x))
I is defined by I(z : y) = K(y) — K(y|z) and is larger than zero by assumption.
+
Since in general K (y|z, K(z)) < K(y|z) we obtain
K(ay) = K(2) + K(y) + K(yle, K(2)) = K(ylz) — (2 : y)
+ +
< K(z) + K(y) < Uz) + U(y) = l(zy) O

Proof (Theorem 2). Since y is [(X)-compressible by ¢, A(¢,p) =U ((\,¢,p)) = =
and I(z) = I(y) + I(p), = is compressible as well:

K(z) <UA) +1Ug) +1Up) = LN + K(y) +(2) = U(y) <(z)
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We define f = (), q) and obtain U((f,p)) = f(p) = x — the main feature
equation. We can define the descriptive map f’ by a function that removes y
from x to obtain the remainder p: f/(z) = p. It suffices if it does so for that
particular z and y, not in general.

From fs definition, we get I(f) = I(A\) +1(q) = I(\) + K(y) < l(y) since y is
I(A)-compressible by assumption. It follows that the (f,p)-pair compresses = at
least to some extent, I(f) + I(p) < l(y) + l(p) = l(x). Therefore, f is indeed a
feature of  and its length is bounded by I(y). O

+
Proof (Theorem 3). In general, the relation K (p) < K (p|z)+ K (z) is valid, since
if p is computable by a detour via z, its shortest program without the detour
can only be shorter. Setting z = K (x) and conditioning on « leads to

K(pla) < K(p|K(2).2) + K(K(2)]x) (A.5)

The conditioning operation is not valid in general, however the detour argu-
ment is still valid in this case. Since K(p|z) = I(f’) [4, Lemma 1(2)] and
K(p|K(z),z) = O(1) [4, Theorem 3(3)], we get

I(f') < K(K(z)]z) (A.6)

We now insert the “complexity of the complexity” expression in [8, Lemma 3.9.2,

+
Eq. (3.18)] K(K(z)|z) < log K(z) 4 2loglog K(x) and the first claim follows.
The second claim is a property of K (K (z)|z) [8, Eq. (3.13)] and therefore also
holds for I(f7). O
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