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Abstract. The ability to induce short descriptions of, i.e. compressing,
a wide class of data is essential for any system exhibiting general intel-
ligence. In all generality, it is proven that incremental compression –
extracting features of data strings and continuing to compress the resid-
ual data variance – leads to a time complexity superior to universal
search if the strings are incrementally compressible. It is further shown
that such a procedure breaks up the shortest description into a set of
pairwise orthogonal features in terms of algorithmic information.
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1 Introduction

The ability to induce short descriptions of, i.e. compressing, a wide class of data
is essential for any system exhibiting general intelligence. In fact, it is fair to say
that the problem of universal induction has been solved in theory [1]. However,
the practical progress is impeded by the use of universal search which requires
the execution of all lexicographically ordered programs until a solution is found.
For the better or worse, Levin Search has the optimal order of computational
complexity [2]. Nevertheless, the obvious slowness of this method, hidden in the
big “O” notation, seems to be the price for its generality.

In practice, the problem of finding short descriptions is often solved by an
incremental approach. For example, in the presently successful deep learning
algorithms, each layer in a deep neural network usually detects features of its
input x and computes the activation p of neurons in that layer, p = f ′(x), as
opposed to essentially guessing descriptions in universal search. In the genera-
tive mode, typical inputs x can be computed from neural activations: x = f(p).
The next layer takes the feature values p and treats them as an input for the
next compression step, which can be viewed as incrementally compressing the
input since the number of neurons typically decreases at each layer. The hierar-
chical structure of the human visual cortex also seems to reflect an incremental,
layered approach to the representation of real world perceptual data. Finally,
the progress of science itself very much resembles incremental compression as
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evidenced by the strive for unified theories given a set of previously acquired
theories in physics.

On the one hand, there are narrowly intelligent artificial systems and gen-
erally intelligent humans both using an efficient, incremental approach to the
learning of concise representations of the world. On the other hand, generally
intelligent artificial systems exist only on paper [3] and are impeded by the inef-
ficient, non-incremental universal search. The present paper tries to bridge this
gap and formulate a general incremental theory of compression. While there
has been previous work on incremental search, it is often meant in the sense of
reusing previously found solutions to problems (see [4] for a review). The meaning
of incremental compression is however different and refers to the decomposition
of a single problem into different parts and solving them one by one.

2 Preliminaries

Consider a universal, prefix Turing machine U . Strings are defined on a finite
alphabet A = {0, 1} with ε denoting the empty string. Logarithms are taken
on the basis 2. A∗ denotes the set of finite strings made up of the elements
of A. Since there is a one-to-one map A∗ ↔ N of finite strings on natural
numbers, strings and natural numbers are used interchangeably. For example,
the length l(n) of an integer n denotes the number of symbols of the string that
it corresponds to. The map 〈·, ·〉 denotes a one-to-one map of two strings on
natural numbers: A∗ × A∗ ↔ N . The corresponding map for more than two
variables is defined recursively: 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉. In particular, 〈z, ε〉 = z.
Since all Turing machines can be enumerated, the universal machine U operates
on a number/string 〈n, p〉 by executing p on the Turing machine Tn: U (〈n, p〉) =
Tn(p). Similarly, a string y is applied to another string x by applying the yth
Turing machine: y(x) ≡ Ty(x) = U (〈y, x〉). The prefix complexity K(x|y) of x
given y is defined by K(x|y) ≡ min{l(z) : U (〈z, y〉) = x} and K(x) ≡ K(x|ε).
The complexity of several variables is defined as K(x, y) ≡ K (〈x, y〉).

3 An Example

Consider the binary string x = 10110111011110111110 . . .. First, it can be dis-
covered that the string consists of blocks of 1’s. Let f1 be the number of the
Turing machine Tf1 in the standard enumeration of Turing machines that takes
an integer m, prints m 1’s and attaches a 0. f1 will be called a feature of x and
the set of parameters p1 = m1m2 . . . = 1, 2, 3, 4, 5, . . . will be called parameters
of the feature. Hence, the task of compressing x has been reduced to the task
of compressing merely p1 which is shorter than x, while x can be computed by
the feature: f1(p1) = x. The next feature f2 may represent the Turing machine
taking a start value p2 = 1 and increasing 1 each step, such that f2(p2) = p1.

Note that universal search would try to find the the whole final description
at once by blind search. In contrast to that, incremental compression finds inter-
mediate descriptions (f1, p1), (f2, p2) and possibly many more layers one by one.

franz@fias.uni-frankfurt.de



76 A. Franz

However, those intermediate descriptions are much longer than the final shortest
program and will therefore be found much more slowly by universal search. In
order to solve this problem, I introduce an inverse map, the so-called descriptive
map f ′, that computes the parameters directly: f ′(x) = p. In the above exam-
ple, the descriptive map f ′

1 may correspond to a Turing machine Tf ′
1

that counts
the number of 1’s that are separated by 0’s and thereby computes p1 instead of
trying to guess it as a universal search procedure would. The compression task
will then consist of finding pairs (f, f ′) for each compression level, such that
f(f ′(x)) = x, which will turn out to be much faster than universal search.

4 Definitions

Definition 1 (Features, descriptive maps and parameters). Let sf and
x be finite strings and Df (x) the set of descriptive maps of x given f :

Df (x) ≡ {f ′ : f(f ′(x)) = x, l(f ′(x)) < l(x) − l(f)} (4.1)

If Df (x) �= ∅ then f is called a feature of x. The strings p ≡ f ′(x) are called
parameters of the feature f . f∗ is called shortest feature of x if it is one of
the strings fulfilling

l (f∗) = min {l(f) : Df (x) �= ∅} (4.2)

and f ′∗ is called shortest descriptive map of x given f∗ if

l (f ′∗) = min {l(g) : g ∈ Df∗(x)} (4.3)

In the definition, any feature is required to do at least some compression,
l(f) + l(p) < l(x), since otherwise f = f ′ = id would always trivially satisfy
the definition for any x. This procedure to search for description and its inverse
at the same time has been proposed in [5], called SS′-Search, albeit not in the
context of features and incremental compression.

Definition 2 (Incremental compression). A string x is called incre-
mentally compressible, if there exist features f1, . . . , fk such that
(f1 ◦ · · · ◦ fk) (ε) = f1(f2(· · · fk(ε))) ≡ U (〈f1, . . . , fk〉) = x.1

5 Properties of a Single Compression Step

The central question for incremental compression is given a finite string x, how
to find a pair of a feature f and descriptive map f ′, such that f(f ′(x)) = x. In
the following the consequences of choosing the shortest f∗ and f ′∗ are explored.
All proofs can be found in the appendix.

1 Note that the 〈·, ·〉-map is defined with 〈z, ε〉 ≡ z, hence fk(ε) = U (〈fk, ε〉) = U(fk),
so that fk acts as a usual string in the universal machine.
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Lemma 1. Let f∗ and f ′∗ be the shortest feature and descriptive map of a finite
string x, respectively. Further, let p ≡ f ′∗(x). Then

1. l(f∗) = K(x|p) and
2. l(f ′∗) = K(p|x).

Theorem 1 (Feature incompressibility). The shortest feature f∗ of a finite
string x is incompressible: K(f∗) = l(f∗) + O(1).

Theorem 2 (Independence of features and parameters). Let f∗ and
f ′∗ be the shortest feature and descriptive map of a finite string x, respectively.
Further, let p ≡ f ′∗(x). Then,

1. K(f∗|p) = K(f∗) + O(1),
2. K(p|f∗) = K(p|f∗,K(f∗)) + O(1) = K(p) + O(1) and
3. K(f∗, p) = K(f∗) + K(p) + O(1).

Interestingly, from the definition of the shortest feature and descriptive map,
it follows that features and parameters do not share information about each other
such that the description of the (f∗, p)-pair breaks down into the simpler task
of describing f∗ and p separately. Since Theorem 1 implies the incompressibility
of f∗ and U (〈f∗, p〉) = x, the task of compressing x is reduced to the mere
compression of p. However, f∗ and p could store additional, residual information
making the compression more difficult: K(x) < K(f∗, p) + O(1). The following
theorem shows that this is not the case.

Theorem 3 (Concise information transfer). Let f∗ and f ′∗ be the shortest
feature and descriptive map of a finite string x, respectively. Further, let p ≡
f ′∗(x).

1. The description of the feature-parameter pair (f∗, p) breaks down into the
description of x and a residual part:

K(f∗, p) = K(x) + K(p|x,K(x)) + O(1) (5.1)

2. For a fixed f∗, minimizing the length of the descriptive map f ′ simultaneously
minimizes the residual part:

l(f ′∗) ∝ K(p|x,K(x)) + O(1)

3. The parameters p do not contain information not present in x and K(x):

K(p|x,K(x)) = O(1) (5.2)

4. The shortest feature f∗ does not contain information not present in x and
K(x):

K(f∗|x,K(x)) = O(1) (5.3)
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This theorem guarantees that all and only the information in x is trans-
ferred to the (f∗, p) pair. Hence, there is no residual information contained in p;
the information content in p is a genuine subset of the information in x with the
rest being stored in f∗. f∗ also does not contain residual information and gen-
uinely represents an incompressible part of x. These conclusions are summarized
in the following corollaries.

Corollary 1. The shortest feature f∗ and its parameters p contain no more and
no less information than is in x:

K(x) = K(f∗, p) + O(1) (5.4)

Corollary 2. After extracting the incompressible feature f∗ all remaining infor-
mation in x resides in p:

K(x) = l(f∗) + K(p) + O(1) (5.5)

This corollary expresses the important result that in order to compress x, it
suffices to compress the shorter and simpler string p. Having found the shortest
feature and descriptive map we can be certain to be on the right path to the
compression of x and not to run into dead-ends.

6 Orthogonal Feature Bases

The following theorems show that compressing the parameters p further leads
to an orthogonal feature basis that optimally represents the original string x.

Theorem 4 (Feature bases). Let x be a string that is incrementally com-
pressed by a sequence of shortest features f∗

1 , f∗
2 , . . . and their respective descrip-

tive maps f ′∗
1, f

′∗
2, . . . with pi ≡ f ′∗

i (pi−1) and p0 ≡ x. Then there will be an
integer k after which pk = ε, no further compression is possible and the shortest
description of x breaks up into features:

K(x) =
k∑

i=1

l(f∗
i ) + O(1) (6.1)

The case k = 1 degenerates into the usual, non-incremental compression, in
which case the description of x does not break up into features.

Theorem 5 (Orthogonality of features). Let x be a finite string that is
incrementally compressed by a complete sequence of features f∗

1 , . . . , f∗
k . Then,

the features are orthogonal in terms of the algorithmic information: I(f∗
i :

f∗
j ) = K(f∗

j )δij + O(1), with δij being the Kronecker symbol.
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7 Efficiency of Incremental Compression

In order to assess the time complexity of incremental compression we derive an
upper bound on l(f ′∗).

Theorem 6 (Bound on the length of descriptive map). Let f∗ and f ′∗

be the shortest feature and descriptive map of a finite string x, respectively. Then
the following bound holds on l(f ′∗):

l(f ′∗) ≤ 2 log K(x) + 4 log log K(x) + O(1) ≤ 2 log l(x) + 4 log log l(x) + O(1)

This bound allows to estimate the time complexity for a potential algorithm
for incremental compression. If the algorithm uses universal search or similar to
find the features and descriptive maps, the time complexity of a single compres-
sion step will be proportional to

O
(
2l(f

∗)+l(f ′∗)
)

≤ O
(
l(x)2 (log l(x))4 2l(f

∗)
)

(7.1)

At each compression level i, pi = f ′∗
i (pi−1) takes the role of x (with p0 ≡ x).

But since information is sliced off at each compression level (Corollary 2), we
know that K(pi) < K(pi−1) < · · · < K(x) ≤ l(x) up to a constant. Thus, the
bound is valid for each l(f ′∗

i ) and the time complexity of the whole incremental
compression will be proportional to

O

(

l(x)2 (log l(x))4
k∑

i=1

2l(f
∗
i )

)

(7.2)

In standard universal search the final program l(p) = Kt(x) ≥ K(x) is
searched for in a non-incremental way, where Kt denotes the resource-bounded
Levin complexity. Universal search is therefore proportional to the huge fac-
tor 2l(p). Since from Theorem 4, we get 2l(p) ≥ 2K(x) = c

∏k
i=1 2l(f

∗
i ) and

∑k
i=1 2l(f

∗
i ) � ∏k

i=1 2l(f
∗
i ) in almost all cases, we observe that incremental com-

pression promises to be much faster than (non-incremental) universal search, if
the string is incrementally compressible.2 Incremental compression is slower only
if the search for f ′∗ is slower than doing universal search from scratch, e.g. when
K(x) ≤ 2 log l(x) + 4 log log l(x) which is true only for very simple strings.

Unfortunately, since the Kolmogorov complexity is incomputable, the practi-
cal implementation of incremental compression will have to resort to some kind
of universal search procedure for the features and descriptive maps which is not
guaranteed to find the shortest ones. It remains to be seen whether the present
theory can be formulated in terms of Levin complexity Kt(x) instead of the
prefix Kolmogorov complexity K(x).

2 It is not difficult to see that the “�” sign is justified for all but very few cases. After
all, only for very few combinations of a set of fixed sum integers

∑
i li = L the sum∑

i 2li is close to 2L.
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8 Discussion

The present approach allows to represent the shortest description of a finite string
by a complete set of pairwise orthogonal features in terms of vanishing mutual
algorithmic information. The features can be searched for one by one without
running into dead-ends, in the sense that for any incomplete set of orthogonal
features the remaining ones always exist. At the same time, while the features are
the carriers of the information about x, the descriptive maps have been proven
to be simple, l(f ′∗) = O (log K(x)), allowing for a fast search for them. That
makes intuitively sense, since the descriptive maps receive x as an input. It is due
to these properties that make the present approach to incremental compression
efficient.

The present work is a continuation of my general approach to artificial intel-
ligence [6]. In fact, I have already demonstrated the practical feasibility and
efficiency of incremental compression in a general setting. In [7] I have built
an algorithm that incrementally finds close to shortest descriptions of all strings
computable by 1- and 2-state and 80 % of the strings computable by 3-state Tur-
ing machines. Readers interested in a practical implementation of the present
approach are referred to that paper.

The example in Sect. 3 demonstrates an actually incrementally compressible
string that complies with the Definition 2. This proves that incrementally com-
pressible strings exist. The question arises thus how many compressible strings
actually are incrementally compressible. Are there any compressible strings at all
that are not incrementally compressible? Another important question is how to
find features in the first place. Universal search is still going to be slow, notwith-
standing the present considerable improvement. There are ideas to address those
questions and present exciting prospects for future research.

Acknowledgements. I would like to express my gratitude to Alexey Potapov and
Alexander Priamikov for proof reading and helpful comments.

A Proofs

Proof (Lemma 1).

1. Suppose there is a shorter program g with l(g) < l(f∗), that generates x with
the help of p: U (〈g, p〉) = x. Then there is also a descriptive map g′ ≡ f ′∗,
that computes p from x and l(g′(x)) = l(f ′∗(x)) < l(x) − l(f∗) < l(x) − l(g).
Therefore, g is a feature of x by definition, which conflicts with f∗ already
being the shortest feature.

2. Suppose there is a shorter program g′ with l(g′) < l(f ′∗), that generates p
with the help of x: U (〈g′, x〉) = g′(x) = p. Then g′ ∈ Df∗(x) since f∗(g′(x)) =
f∗(p) = x and l(g′(x)) = l(p) < l(x) − l(f∗) by construction of f ′∗. However,
by Eq. (4.3) f ′∗ is already the shortest program able to do so, contradicting
the assumption. 
�
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Proof (Theorem 1). From Lemma 1 we know l(f∗) = K(x|p), with p = f ′∗(x).
In all generality, for the shortest program q computing x, l(q) = K(x) = K(q)+
O(1) holds, since it is incompressible (q would not be the shortest program
otherwise). For shortest features, the conditional case is also true: K(x|p) =
K(f∗|p) + O(1). After all, if there was a shorter program g, l(g) < l(f∗), that
computed f∗ with the help of p, it could also go on to compute x from f∗ and
p, leading to K(x|p) ≤ l(g) + O(1) < l(f∗) + O(1), which contradicts l(f∗) =
K(x|p).

Further, for any two strings K(f∗|p) ≤ K(f∗), since p can only help in
compressing f∗. Putting it all together leads to l(f∗) = K(x|p) = K(f∗|p) +
O(1) ≤ K(f∗)+O(1). On the other hand, since in general K(f∗) ≤ l(f∗)+O(1)
is also true, the claim K(f∗) = l(f∗) + O(1) follows. 
�
Proof (Theorem 2).

1. Follows immediately from K(f∗) = l(f∗)+O(1) = K(x|p)+O(1) = K(f∗|p)+
O(1).

2. The first equality follows from Theorem 1, since we only need to read off
the length of f∗ in order to know K(f∗) up to a constant. For the second
equality, consider the symmetry of the conditional prefix complexity relation
K(f∗, p) = K(f∗)+K (p|f∗,K(f∗))+O(1) = K(p)+K (f∗|p,K(p))+O(1) [8,
Theorem 3.9.1, p. 247]. If p does not help computing a shorter f∗, then know-
ing K(p) will not help either. Therefore, from (1), we obtain K (f∗|p,K(p)) =
K(f∗) + O(1) and therefore K (p|f∗,K(f∗)) = K(p) + O(1).

3. In general, by [8, Theorem 3.9.1, p. 247] we can expand K(f∗, p) = K(f∗) +
K (p|f∗,K(f∗)) + O(1). After inserting (2) the claim follows. 
�

Proof (Theorem 3).

1. Expand K(x, p) up to an additive constant:

K(p) + K(x|p,K(p)) = K(x, p) = K(x) + K(p|x,K(x)) (A.1)

From Lemma 1(1) and Theorem 1 we know K(f∗) = K(x|p) + O(1). Condi-
tioning this on K(p) and using f∗’s independence of p and thereby of K(p)
(Theorem 2(1)) we get K(x|p,K(p)) = K(f∗|K(p)) + O(1) = K(f∗) + O(1).
Inserting this into Eq. (A.1) and using Theorem 2(3), yields

K(f∗, p) = K(p) + K(f∗) = K(x) + K(p|x,K(x)) + O(1) (A.2)

2. Fix f∗ and let Pf∗(x) ≡ {f ′(x) : f ′ ∈ Df∗(x)} be the set of admissible para-
meters computing x from f∗. From Lemma 1(2), we know that minimizing
l(f ′), with s = f ′(x), is equivalent to minimizing K(s|x), i.e. choosing a
string p = f ′∗(x) ∈ Pf∗(x) such that K(s|x) ≥ K(p|x) for all s ∈ Pf∗(x).
Conditioning Eq. (A.2) on x leads to:

K(p|x) + K(f∗|x) = K(x|x) + K(p|x,K(x), x) = K(p|x,K(x)) (A.3)

up to additive constants. Since f∗ and x are fixed, the claim l(f ′∗) = K(p|x) ∝
K(p|x,K(x)) + O(1) follows.
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3. It remains to show that there exists some p ∈ Pf∗(x) such
that K(p|x,K(x)) = O(1). After all, if it does exist, it will
be identified by minimizing l(f ′), as implied by (2). Define q ≡
argmins {l(s) : U (〈f∗, U(s)〉) = f∗ (U(s)) = x} and compute p ≡ U(q). Since
f∗(p) = x, p ∈ Pf∗(x). Further, there is no shorter program able to compute
p, since with p we can compute x given f∗ and q is already the shortest
one being able to do so, by definition. Therefore, l(q) = K(p) + O(1) and
K(x|f∗) ≤ K(p) + O(1). Can the complexity K(x|f∗) be strictly smaller
than K(p) thereby surpassing the presumably residual part in p? Let p′ be
such a program: l(p′) = K(x|f∗) < K(p) + O(1). By definition of K(x|f∗),
f∗(p′) = x. However, then we can find the shortest program q′ that com-
putes p′ and we get: f∗ (U(q′)) = x. Since l(q′) ≤ l(p′) + O(1), we get
l(q′) < K(p) + O(1) = l(q) + O(1). However, this contradicts the fact that q
is already the shortest program able to compute f∗(U(q)) = x. Therefore,

l(q) = K(x|f∗) = K(p) + O(1) (A.4)

In order to prove K(p|x,K(x)) = O(1) consider the following general expan-
sion

K(p, x|f∗) = K(x|f∗) + K(p|x,K(x), f∗) + O(1) (A.5)

Since we can compute p from q and go on to compute x given f∗, l(q) =
K(p, x|f∗) + O(1). After all, note that with Theorem2(2), we have l(q) =
K(p) = K(p|f∗) ≤ K(p, x|f∗) up to additive constants, but since we can com-
pute 〈p, x〉 given f∗ from q, we know K(p, x|f∗) ≤ l(q) + O(1). Both inequal-
ities can only be true if the equality l(q) = K(p, x|f∗) + O(1) holds. At the
same time, from Eq. (A.4), l(q) = K(x|f∗) holds. Inserting this into Eq. (A.5)
leads to K(p|x,K(x), f∗) = O(1). Taking K(p) = K(p|f∗) + O(1) (Theo-
rem 2(2)), and inserting the conditionals x and K(x) leads to: K(p|x,K(x)) =
K(p|x,K(x), f∗) + O(1) = O(1). Since this shows that a p ∈ Pf∗(x) exists
with the minimal value K(p|x,K(x)) = O(1), (2) implies that it must be the
same or equivalent to the one found by minimizing l(f ′).

4. Conditioning Eq. (A.3) on K(x) we get K(p|x,K(x)) + K(f∗|x,K(x)) =
K(p|x,K(x)) + O(1) from which the claim follows. 
�

Proof (Corollary 1). Inserting Eq. (5.2) into Eq. (5.1) proves the point. 
�
Proof (Corollary 2). Inserting Eq. (A.2) into Eq. (5.4) and using the incompress-
ibility of f∗ (Theorem 1) proves the point. 
�
Proof (Theorem 4). According to the definition of a feature, at a compression step
the length of the parameters l(pi) < l(x)−l(f∗

i ) and their complexity (Corollary 2)
decreases. Since the f∗

i are incompressible themselves (Theorem 1), the parameters
store the residual information about x. Therefore, at some point, only the possibil-
ity pk ≡ f ′∗

k(pk−1) = ε with l(f∗
k ) = K(pk−1) remains and the compression has to

stop. Expanding Corollary 2 proves the result: K(x) = l(f∗
1 ) + K(p1) + O(1) =

l(f∗
1 ) + l(f∗

2 ) + K(p2) + O(1) =
∑k

i=1 l(f∗
i ) + O(1). 
�
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Proof (Theorem 5). Algorithmic information is defined as I(f∗
i : f∗

j ) ≡ K(f∗
j ) −

K(f∗
j |f∗

i ). The case i = j is trivial, since K(f∗
i |f∗

i ) = 0. If i > j, then pj =
(
f∗
j+1 ◦ · · · ◦ f∗

i

)
(pi), which implies that all information about fi is in pj . But

since according to Theorem 2(1), K(f∗
j |pj) = K(f∗

j ) + O(1) we conclude that
K(f∗

j |f∗
i ) = K(f∗

j )+O(1). If i < j, then we know that f∗
j in no way contributed

to the construction of pi further in the compression process. Hence K(f∗
j |f∗

i ) =
K(f∗

j ). 
�
Proof (Theorem 6). Let p ≡ f ′∗(x). Further, from Lemma 1 we know that
K(x|p) = l(f∗) and K(p|x) = l(f ′∗). Using Corollary 2, the difference in algorith-
mic information is I(p : x)−I(x : p) = K(x)−K(x|p)−K(p)+K(p|x) = l(f ′∗)+
O(1). By [8, Lemma 3.9.2, p. 250], algorithmic information is symmetric up to
logarithmic terms: |I(x : p) − I(p : x)| ≤ log K(x) + 2 log log K(x) + log K(p) +
2 log log K(p)+O(1). Since x is computed from f∗ and p, we have K(p) ≤ K(x).
Putting everything together leads to l(f ′∗) ≤ 2 log K(x) + 4 log log K(x) + O(1).
The second inequality follows from K(x) ≤ l(x) + O(1). 
�
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